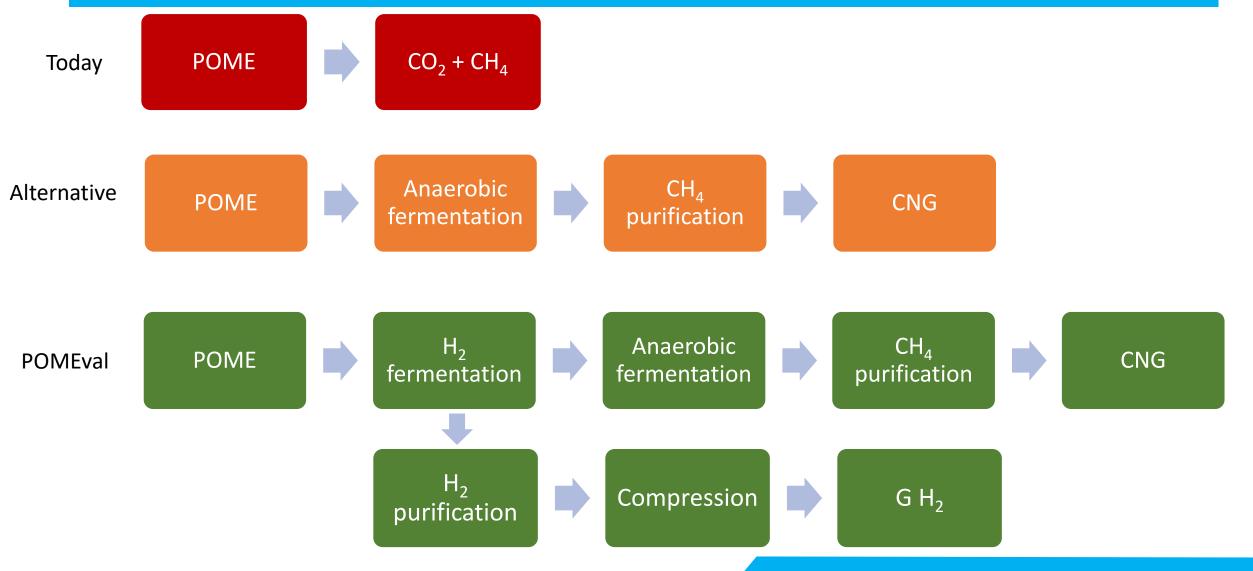


Problem to solve

Many palm mills have high greenhouse gas emissions

• POME (Palm Oil Mill Effluent) is fermented in open air

• The consortium analysed the possibility to convert POME into valuable products



Consortium

Person involved	Affiliation	Expertise	Location
Pieternel Claassen and Johan van Groenestijn	Wageningen Food & Biobased Research	Hydrogen fermentation and anaerobic digestion	NL
Frank Bergmans	MVO The Dutch Association for Oils and Fats Industry	Fatty acids from POME	NL
Francois Huberts	DMT Environmental Technology	Biogas upgrading, water treatment	NL
Ellart de Wit	HyGear	Hydrogen recovery and purification, industrial gas handling	NL and Singapore
Rob van As	Paques	Bioreactor design, biological waste water treatment	Malaysia and NL
Jasmine Hue	Embassy of the Kingdom of the Netherlands	Water and waste management	Malaysia
Jamaliah Jahim and Peer Mohamed	National University of Malaysia	Hydrogen fermentation of POME followed by anaerobic digestion	Malaysia

Process Flow Diagram

POMEval products

- Typical palm mill
 - Fresh fruit bunch: 60 ton/h
 - POME: 750 m³/day
- Possible products

Product	Amount (tonnes/year)
Hydrogen gas	43
Methane as CNG	1820
Carbon dioxide compressed	2925
Sludge-oil	2573
Fertilizer in treated effluent	156

Sludge-oil and fertilizer are valorized today

Technical background

H₂ fermentation has two functions:

1. Pre-treatment of effluent to increase yield and productivity anaerobic fermentation

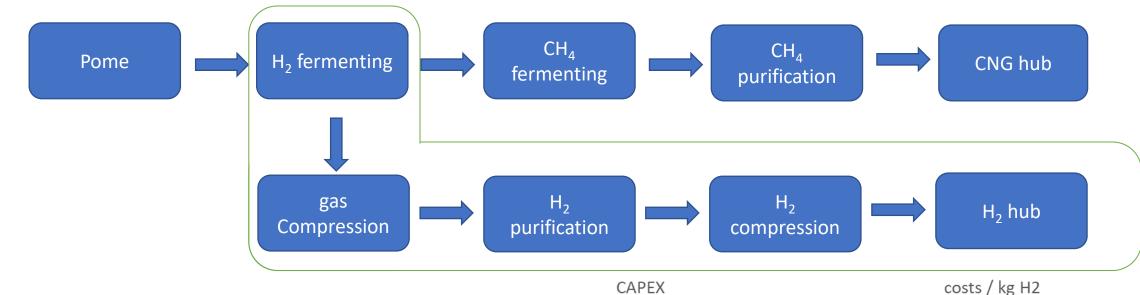
 Smaller anaerobic fermentor, higher throughput Lower CAPEX Lower OPEX

- 2. Produce H₂
 - H₂ as chemical/fuel

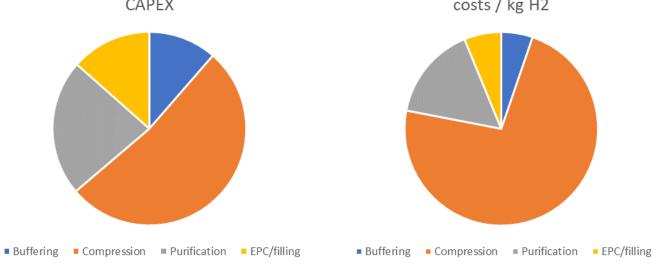
Valorization CNG & H₂

- H₂ and CH₄ need at palm oil mill is low
- Produce sellable product that can be transported to customer

- H₂ Market
 - Industrial use (chemical, glass, metal industries)
 - Fuel for hydrogen cars
- Purify and delivery at 300 bar
 - Includes filling hub


- CNG market
 - As fuel for hydrogen cars
 - Cooking/Heating
- Purify and delivery at 200bar
 - Includes filling hub

CNG business case


- CNG costs mainly by depreciation of CAPEX
 - Digester (€ 405,000 / a)
 - Biogas-upgrading (€ 240,000 / a)
- Total CNG costs € 0.35 / kg CNG
- Market price: € 0.37 / kg CNG
- Yearly revenue € 673,000
 - 1820 tonnes / a

Valorization H₂ fermentation/purification

- Compression costs are main cost driver
- Total H₂ costs: €7.52 / kg H₂

H₂ business case

- Production costs central SMR with natural gas
 - €1,50-2,00 / kg H₂ (excluding depreciation)
 - Compression and handling €1,00 1,50 / kg H₂
 - Production costs Grey hydrogen: €2,50-3,50 / kg H₂ (excluding trucking)
- Additional value of Green Hydrogen
 - Expected to be around €1,00 / kg H₂
- Future merchant price green H₂: €3.50-4.50 / kg H₂
 - depending on value of "green"
- Yearly revenue € 168,000

Commercial analysis of solution

- CNG has positive (marginal) business case (5,4% marge)
 - CNG reactor based upon increased yield and activity of H₂ fermention
- H₂ fermentation no business case today
- Need other sources of valorization
 - CO₂
 - Needs additional investements and market
 - Commercialization becomes very complex

Product	Amount (tonnes/year)	Value (€/tonne)	Annual benefit (€/year)
Hydrogen gas	43	3500-4500	168,000
Methane as CNG	1820	370	673,000
Carbon dioxide compressed	2925	120-170	424,000

Discussion

- Costs of products are in ball-park of feasibility
 - Improvements possible (H₂ fermentation, anaerobic fermentation, CNG upgrading, H₂ compression/purification)

- Focus in world on reducing green house gas emissions will open markets for CNG and H₂
 - In (near) future green hydrogen demand for mobility will increase
 - Potentially allows higher H₂ prices
 - Penalties for fossil based feedstock

Next steps

- Reduce complexity of commercialization / Proof of principle
- R&D on improving bottle necks
 - Improve H₂ fermentation
 - Yield
 - H₂ concentration in gas
 - Improve hydrogen purification / compression
 - Reduce CAPEX of CNG
- Pilot of combined system (TRL6/7)
- Demonstration of combined system (TRL8)
- Commercial launch (TRL9)

Next project

- Consortium has been built on technology providers
 - Requires end-customer for piloting/commercialisation
- Next project (Reach TRL6/7)
 - Make detailed PFD
 - Use assumption best engineering knowledge
 - Do laboratory test on modules
 - Input into optimize PFD
 - Calculate cost options
 - Optimize PFD on economics
 - LCA
 - Prepare for demonstration

Funding options

- R&D
 - RTD-funds
 - Horizon2020
 - Malaysia University funds
 - RVO
 - Co-funding by industry
- Piloting
 - MOSTI: Malaysia Ministry for science, technology and industry ICF: International Collaboration Fund
 - Malaysia biomass organization: Enhancing circularities of Malaysia Agriculture sector
 - Water And Energy For Food:a Grand Challenge For Development WE4FAsiaBids@tetratech.com
 - Co-funding by industry / end-user

Thank you for your attention

Keep In Touch With Us

www.hygear.com
f in

HEAD OFFICE

Westervoortsedijk 73 HG 6827 AV, Arnhem The Netherlands

T +31 88 9494 308 E sales@hygear.com

ASIA

133 Cecil Street #09-01B Keck Seng Tower Singapore 069535

T +65 6909 3064 E asia@hygear.com

Development objectives

- Optimization of H₂ productivity and yield
 - various process- and reactor configurations.
 - H2 yield/sugar maximized and higher percentage in the raw gas (UKM, WFBR)
- Determination of the effect of H₂ fermentation on improved anaerobic digestion
 - Optimization, extent, cause of the effect (UKM, WFBR)
- Improvement of H2 purification and compression
 - Ionic liquid compression
 - Electro-chemical compression
 - Membrane/VSA coupling
 - Electro-chemical purification
- Reducing CAPEX and OPEX
 - Optimized reactor and process design and smart connection (reuse of wastes): (Paques, DMT and HyGear)
- Demonstrate valorization of products
 - hydrogen, methane, CO2 and sludge oil utilization (Paques, DMT and HyGear)
 - Update and fine-tune of economic assessment including markets and prices
- Proof environmental benefits
 - Identification and quantification of GHG reduction and increase of circularity (UKM, WFBR, Paques, HyGear and MVO)

